Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement

2015-04-14
2015-01-1709
Electric drive vehicles (EDVs) have complex thermal management requirements not present in conventional vehicles. In addition to cabin conditioning, the energy storage system (ESS) and power electronics and electric motor (PEEM) subsystems also require thermal management. Many current-generation EDVs utilize separate cooling systems, adding both weight and volume, and lack abundant waste heat from an engine for cabin heating. Some use battery energy to heat the cabin via electrical resistance heating, which can result in vehicle range reductions of 50% under cold ambient conditions. These thermal challenges present an opportunity for integrated vehicle thermal management technologies that reduce weight and volume and increase cabin heating efficiency. Bench testing was conducted to evaluate a combined fluid loop technology that unifies the cabin air-conditioning and heating, ESS thermal management, and PEEM cooling into a single liquid coolant-based system.
Technical Paper

Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

2015-04-14
2015-01-0355
Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all-electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation.
Journal Article

Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather

2016-04-05
2016-01-0262
When operated, the cabin climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all-electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the vehicle climate control system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid-connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort.
Technical Paper

Cadillac ATS “Loads Management Striker Cap” Development

2014-04-01
2014-01-0928
The automotive industry is under great pressure to reduce vehicle mass for both cost and fuel economy gains. A significant contributor to body and suspension structure mass is peak vertical loads, primarily entering the body structure through the jounce bumper to body interface. This paper focuses on the successful development of “Loads Management Striker Caps” for the 2013 Cadillac ATS front and rear suspension. Component design and development of the striker caps was executed using explicit finite element analysis tools. Multi-body dynamics vehicle models were used to set component requirements and confirm striker cap performance for the vehicle during peak vertical events. The “Loads Management Striker Caps” ultimately reduced peak strut/shock tower loads by 40% in the front suspension and 25% in the rear suspension. This resulted in significant body and chassis mass savings, contributing to the Cadillac ATS's class leading curb weight.
Technical Paper

B-Pillar Intrusion and Velocity Sensitivity Study for Side Impact Load Case

2011-10-06
2011-28-0109
In the early vehicle design stage math model, subsystems such as dummies, airbags and interior trims are generally not considered for structural evaluation. The objective of this study is to evaluate the B-pillar intrusion and velocity sensitivity in a side impact load case with respect to the dummies, airbags and interior trim. In this study four different vehicles were used to understand the B-pillar intrusion and velocity sensitivity trends. US NCAP lateral impact load case is used in this study. Five side impact load case analyses iterations, with different combinations of subsystems, were completed. Dummy inertia and interior trims play an important role for B-Pillar intrusion and velocity in side impact load case (USLINCAP). If the dummy and interior trim is not well defined in the CAE model, higher B-pillar intrusion and velocity will be predicted. This could vary from 10 to 25 %.
Technical Paper

Assessing the National Off-Cycle Benefits of 2-Layer HVAC Technology Using Dynamometer Testing and a National Simulation Framework

2023-04-11
2023-01-0942
Some CO2-reducing technologies have real-world benefits not captured by regulatory testing methods. This paper documents a two-layer heating, ventilation, and air-conditioning (HVAC) system that facilitates faster engine warmup through strategic increased air recirculation. The performance of this technology was assessed on a 2020 Hyundai Sonata. Empirical performance of the technology was obtained through dynamometer tests at Argonne National Laboratory. Performance of the vehicle across multiple cycles and cell ambient temperatures with the two-layer technology active and inactive indicated fuel consumption reduction in nearly all cases. A thermally sensitive powertrain model, the National Renewable Energy Laboratory’s FASTSim Hot, was calibrated and validated against vehicle testing data. The developed model included the engine, cabin, and HVAC system controls.
Technical Paper

Aspects of Cabin Fluid Dynamics, Heat Transfer, and Thermal Comfort in Vehicle Thermal Management Simulations

2005-05-10
2005-01-2000
Automobile manufacturers and suppliers are under pressure to develop more efficient thermal management systems as fuel consumption and emission regulations become stricter and buyers demand greater comfort and safety. Additionally, engines must be very efficient and windows must deice and defog quickly. These requirements are often in conflict. Moreover, package styling and cost constraints severely limit the design of coolant and air conditioning systems. Simulation-based design and virtual prototyping can ensure greater product performance and quality at reduced development time and cost. The representation of the vehicle thermal management needs a scalable approach with 0-D, 1-D, and 3-D fluid dynamics, multi-body dynamics, 3-D structural analysis, and control unit simulation capabilities. Different combinations and complexities of the simulation tools are required for various phases of the product development process.
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Technical Paper

Acoustic Performance Evaluation of Hood Liner Constructions

2015-06-15
2015-01-2206
In automotive noise control, the hood liner is an important acoustic part for mitigating engine noise. The random incidence absorption coefficient is used to quantify the component level acoustic performance. Generally, air gaps, type of substrate materials, density of the substrate materials and Air Flow Resistivity (AFR) of the cover scrim are the dominant control factors in the sound absorption performance. This paper describes a systematic experimental investigation of how these control factors affect flat sample performance. The first stage of this study is full factorial measurement based on current available solutions from sound absorber suppliers. The acoustic absorption of different hood liner constructions, with variations in materials, density, air gaps, and scrims was measured.
Technical Paper

A Rough Road Ride Simulation Assessment with Flexible Vehicle Body

2014-04-01
2014-01-0112
A rough road ride assessment provides an insightful evaluation of vehicle responses beyond the frequency range of suspension or steering modes. This is when body structure influence on the vehicle performance can be detected by vehicle occupants. In this paper, a rough road is used to evaluate vehicle ride performance and multi-body simulation (MBS) models are developed along with finite-element (FE) representations of the vehicle body and structure. To produce high fidelity simulation results in the frequency range of interest, various vehicle subsystem modeling contents are examined. A case study of a vehicle model with two different structures is provided. Time histories and frequency based analyses are used to obtain insights into the effects of body structure on vehicle responses. Finally, two metrics (‘Isolation’ and ‘Shake’) are used to distinguish the vehicle ride performance.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

A Modular Battery Management System for HEVs

2002-06-03
2002-01-1918
Proper electric and thermal management of an HEV battery pack, consisting of many modules of cells, is imperative. During operation, voltage and temperature differences in the modules/cells can lead to electrical imbalances from module to module and decrease pack performance by as much as 25%. An active battery management system (BMS) is a must to monitor, control, and balance the pack. The University of Toledo, with funding from the U.S. Department of Energy and in collaboration with DaimlerChrysler and the National Renewable Energy Laboratory has developed a modular battery management system for HEVs. This modular unit is a 2nd generation system, as compared to a previous 1st generation centralized system. This 2nd generation prototype can balance a battery pack based on cell-to-cell measurements and active equalization. The system was designed to work with several battery types, including lithium ion, NiMH, or lead acid.
Journal Article

A Critical Assessment of Factors Affecting the Flammability of R-1234yf in a Frontal Collision

2014-04-01
2014-01-0419
An evaluation methodology has been developed for assessing the suitability of R-1234yf in vehicles. This relates primarily to evaluating the flammability of R-1234yf in the engine compartment during a frontal collision. This paper will discuss the process followed in the methodology, the technical rationale for this process, and the results of the analysis. The specific types of analysis included in the methodology are: exhaust-system thermal characterization, computer simulated crash tests, actual crash tests, teardown and examination of crashed parts, and releases of refrigerant onto hot exhaust manifolds. Each type of analysis was logically ordered and combined to produce a comprehensive evaluation methodology. This methodology has been applied and demonstrates that R-1234yf is difficult to ignite when factors that occur in frontal crashes are simultaneously considered.
X